Counting integral points on indefinite ternary quadratic equations over number fields

نویسندگان

چکیده

Abstract We study an asymptotic formula for counting integral points over equation defined by a non-degenerate indefinite ternary quadratic form f representing non-zero integer such that $-a\cdot det(\,f)$ is square number field. In particular, we prove the leading coefficient of this given product local densities normalized $1-p^{-1}$ all finite primes p.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ternary quadratic forms over number fields with small class number

We enumerate all positive definite ternary quadratic forms over number fields with class number at most 2. This is done by constructing all definite quaternion orders of type number at most 2 over number fields. Finally, we list all definite quaternion orders of ideal class number 1 or 2.

متن کامل

Theta Functions of Indefinite Quadratic Forms over Real Number Fields

We define theta functions attached to indefinite quadratic forms over real number fields and prove that these theta functions are Hilbert modular forms by regarding them as specializations of symplectic theta functions. The eighth root of unity which arises under modular transformations is determined explicitly.

متن کامل

One class genera of ternary quadratic forms over number fields

We enumerate all one class genera of definite ternary quadratic forms over number fields. For this, we construct all Gorenstein orders of type number one in definite quaternion algebras over number fields. Finally, we list all definite quaternion orders of ideal class number one.

متن کامل

Counting points on curves over finite fields

© Association des collaborateurs de Nicolas Bourbaki, 1972-1973, tous droits réservés. L’accès aux archives du séminaire Bourbaki (http://www.bourbaki. ens.fr/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier ...

متن کامل

Counting Points on Curves over Finite Fields

Stanford University) Abstract: A curve is a one dimensional space cut out by polynomial equations, such as y2=x3+x. In particular, one can consider curves over finite fields, which means the polynomial equations should have coefficients in some finite field and that points on the curve are given by values of the variables (x and y in the example) in the finite field that satisfy the given polyn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Quarterly Journal of Mathematics

سال: 2022

ISSN: ['0033-5606', '1464-3847']

DOI: https://doi.org/10.1093/qmath/haac039